Monday, 23 December 2024

 

Prove that the parallelogram circumscribing a circle is a rhombus. 


Since ABCD is a parallelogram circumscribed in a circle

AB=CD........(1)

BC=AD........(2)

DR=DS (Tangents on the circle from same point D)

CR=CQ(Tangent on the circle from same point C)

BP=BQ (Tangent on the circle from same point B )

AP=AS (Tangents on the circle from same point A)

Adding all these equations we get

DR+CR+BP+AP=DS+CQ+BQ+AS

(DR+CR)+(BP+AP)=(CQ+BQ)+(DS+AS)

CD+AB=AD+BC

Putting the value of equation 1 and 2 in the above equation we get

2AB=2BC

AB=BC...........(3)

From equation (1)(2) and (3) we get

AB=BC=CD=DA

ABCD is a Rhombus

No comments:

Post a Comment

Pair of linear equation s class 10 imp

  Question 1. Draw the graph of 2x + y = 6 and 2x – y + 2 = 0. Shade the region bounded by these lines and x-axis. Find the area of the shad...