Be don't worry just visit dontwory

Area of similar triangle

OBJECTIVE
To verify that the ratio of the areas of two similar triangles is equal to the ratio of the square of their corresponding sides. 

PREREQUISITE KNOWLEDGE
Concept of parallel lines

MATERIALS REQUIRED
Scissors
Geometry box
Colours
White paper

PROCEDURE
Take a white chart paper and cut a ∆ABC with 
AB=6cm,  
 BC=6cm, 
 CA=6cm

Mark five points P1,P2,P3,P4,P5 at a distance of 1 cm on side AC and
Q1,Q2,Q3,Q4,Q5 at a distance of 1 cm on side AB. ( Image 1)

                                                                          Image 1

Join P1Q1,P2Q2,....P5Q5  


Draw parallel line to  AC from Q1, Q2....
and parallel line to AB from P1, P2,.( Image 2)
                                                                           Image 2

This ∆ ABC is divided into 36 similar and equal in area of triangles.

Construct a  ∆ PQR 
with PQ= Half of AB
        PR=Half of AC  
        QR=Half of BC on other chart paper

Mark D1,D2  and E1,E2 on sides PQ and PR ( Image3)

                                                                            Image 3

Divide  ∆ PQR into 9  similar and equal in areas triangles ( Image 4)

                                                                           Image 4
OBSERVATION

Area of   ∆ABC=Area of 36 smaller triangles
Area of  ∆ PQR=Area of 9 smaller triangles


CONCLUSION

It is Verified that the ratio of the areas of two similar triangles is equal to the ratio of the square of their corresponding sides.

0 comments:

Post a Comment

Labels

Translate

Labels

Blog Archive